
Reducing Consumed Data Volume in Bandwidth
Measurements via a Machine Learning Approach

Christian Maier∗, Peter Dorfinger∗, Jia Lei Du∗, Sven Gschweitl†, Johannes Lusak†
∗Salzburg Research Forschungsgesellschaft mbH, †alladin-IT GmbH

{christian.maier, peter.dorfinger, jia.du}@salzburgresearch.at, {sg, jl}@alladin.at

Abstract—Measurements that determine the available down-
load and upload bandwidth of an end-user Internet connection
(so-called speed tests) are typically performed by maximizing the
utilization of the connection for a fixed time interval. Especially
in broadband connections, such tests consume a huge amount
of data volume during their execution. As a result, only a few
tests can be performed per month on mobile connections with
limited data volumes, since otherwise a significant portion of the
volume is used for tests or additional costs are incurred. To reduce
the required average data volume of these tests, we present a
novel approach with a dynamic test duration based on a machine
learning model. We train this model via a supervised learning
process, using the recorded data of real speed tests executed
by end-users in cellular 4G networks. The evaluation of the
resulting method suggests that the amount of saved data volume
is significant, while the deviation of the determined bandwidth
(compared to a usual test with fixed duration) is negligible.

I. INTRODUCTION

The concept of bandwidth, defined as the amount of data
that a link or path can deliver per unit of time, is central to data
communication. It often directly relates to the performance of
applications and hence has a strong impact on the end-user
Quality of Experience (QoE). This bandwidth is influenced
by various factors, such as the used technology, the present
infrastructure and environment or the number of concurrent
users. In the case of Internet connections, it is also limited
by a bound specified in the contract concluded between the
customer and the Internet service provider. In particular mobile
Internet connections provide an actual available bandwidth
which varies greatly and often does not reach this bound.
Especially if the performance of applications suffers noticeable
on this gap between the promised and actual bandwidth, users
are interested in determining the latter. The methods to achieve
this can roughly be divided into two different categories,
depending on whether they actually measure or estimate this
quantity. Obviously, the effort for estimations is lower, whereas
measurements offer (in general) higher accuracy.

There are various tools for available bandwidth estimations,
such as Pathload [7], Yaz [16] and Delphi [14]. All of them are
(more or less) carried out by producing some small amount
of data transfer between the client and the server and by
estimating the unused bandwidth from the occurring behavior.

©IFIP, 2019. This is the author’s version of the work. It is posted here by
permission of IFIP for your personal use. Not for redistribution. The definitive
version was published in 2019 Network Traffic Measurement and Analysis
Conference (TMA), Paris, France, 2019. doi: 10.23919/TMA.2019.8784575

In this paper, we will deal with measurements of the avail-
able bandwidth of an end-user Internet connection. These are
usually done via a specified speed test, which determines the
available download and upload data rate, as well as some other
parameters (e.g. latency) of the used connection. Examples
are NetPerf [8], IPerf [6] and the RTR Multithreaded Broad-
band Test (RMBT) [15]. The Body of European Regulators
for Electronic Communications (BEREC) specifies in [2] a
reference measurement tool for the monitoring of Quality
of Service (QoS) parameters of Internet Access Services.
This specification, which we regard as a requirement to be
fulfilled by the methods considered in this paper, states that
the available bandwidth must be measured over TCP by fully
utilizing the connection for a fixed time interval. This results
in a considerable amount of consumed data, as well as a
noticeable influence on the performance of other applications.
The former is in particular a huge problem for customers
which have contracts with limited data amount per month. One
of the determining factors for the amount of consumed data
is the duration of the speed test, which is usually a predefined
constant. Since this constant is in principle arbitrarily selected,
the consumed data volume can be reduced by simply choosing
a shorter duration. This may change the result of the test
significantly, in particular if there is a huge dynamic in the
available data rate of the connection to be measured. The latter
behavior occurs especially in cellular networks.

In practice, there are commonly accepted values for the
duration of a speed test which lead to meaningful results. We
will not deal with the (difficult) question how to determine
such a duration. We just want to mention that the result of a
single performed speed test should only be used to obtain in-
formation about the bandwidth in the respective measurement
interval. The point of view in this paper is the following: If one
accepts that a speed test with a fixed predefined duration gives
a meaningful value, is it possible to specify a new test (using
the same method as the original one) with a shorter duration,
which gives a result that is not significantly different than the
result from the original test and consumes a substantially lower
amount of data volume. In the present paper we will investigate
a principally shorter duration of the test and a test duration
which is determined dynamically for each execution. These
two approaches will be compared in terms of their accuracy
of the result and the amount of saved data volume.

The determination of a dynamic duration which does not
change the result of the test considerably will be done via

a machine learning (ML) model. The use of such techniques
in network measurements has increased significantly in recent
years (see below). This is on the one hand due to the high
dimensionality of network data and on the other hand due to
the success of ML (and especially deep learning) in fields like
image and signal processing. From the various different ML
models we have chosen a simple feed forward artificial neural
network for our approach.

The rest of the paper is organized as follows: Sec. II gives an
overview on related work. In Sec. III we describe some details
of a single execution of the speed test we are investigating.
Sec. IV deals with a principally shorter test duration. In Sec. V
we specify a test with a dynamic duration determined by
a neural network. The evaluation and comparison of both
approaches is done in Sec. VI. Finally, Sec. VII concludes
the paper and gives an outlook on future work.

II. RELATED WORK

One should take care that the notion of available bandwidth
is used interchangeably in the literature. In contrast to our
point of view, which defines the available bandwidth as the
actual achievable data rate that a connection offers to the
user, the term is frequently also used to refer to the unused
bandwidth of a connection. Note that the latter determines the
former, if the current traffic load is known. Additionally, it
is important to differentiate between mobile and non-mobile
estimations and measurements, since the bandwidth in mobile
networks is subject to much greater dynamics.

The topic of available bandwidth estimation (i.e. the esti-
mation of the maximum unused bandwidth) and measurement
is largely extended in the literature. To list only a few of them,
the survey [13] gives an overview on the underlying techniques
and methodologies of some estimation tools. The difficulty
of accurate bandwidth measurements is depicted in [10].
In [17] authors investigate test shortening of non-mobile IPerf
bandwidth measurements. A bandwidth estimation method for
mobile networks is presented in [11].

There is a rapidly growing amount of literature which
investigates the application of ML to networks and network
measurement problems. In [3] the authors jointly present
the application of such techniques in various key areas of
networking across different network technologies and also
provide a primer on ML in general. The focus of [5] is on
the comparison of different ML models via their performance
in the analysis of network measurements (like detection of
network attacks, anomaly detection and QoE prediction). The
survey [12] investigates the application of ML techniques to IP
traffic classification. In [1] authors use an approach based on
ML for QoE modeling. Finally, [4] deals with the application
of ML in cyber-security-analytics.

III. METHODOLOGY OF BANDWIDTH MEASUREMENTS

This section provides a brief description of a test method
that determines the available download or upload bandwidth
of an end-user Internet connection (it is the one of RMBT).
In order to keep the exposition simple, we will restrict to the

download case. The upload case works almost in the same
way. Besides, we only describe those parts of the test which
are relevant for the further discussion. For more details we
refer to [15].

Such a test has a nominal duration t and a fixed number n
of used TCP connections. The nominal duration could either
be a predefined constant (which is the case in state-of-the-
art implementations), or could be determined dynamically for
each execution of the test. We do not specify this for now.
Before the actual test begins, a pretest is performed. During
this pretest, the client (executing the test) opens n parallel TCP
connections to a single test server, which are then used for the
transmission of data chunks of growing size. This ensures that
the connections are in an active state and also determines some
further necessary test parameters (see below). Afterwards, the
actual test starts with the server continuously sending data
streams, one via each TCP connection, to the client. These data
streams consist of chunks of randomly generated data with
high entropy. The size of the data chunks varies with a specific
distribution, whose parameters are among the test parameters
determined during the pretest. For each k ∈ {1, . . . , n}, the
client records the arrival time t(j)k of the last bit of the j-th
data chunk which was sent on TCP connection k, as well as
the total amount b(j)k of data received on this connection up
to this moment. The chunks and the arisen data amount of the
pretest are not considered in this recording process.

After time t, the test server stops sending further chunks
on all connections. The client waits until the last sent data
chunks are completely transmitted. Let mk denote the to-
tal number of data chunks which were sent on connec-
tion k during the actual test execution. The sequence s =

(t
(1)
k , b

(1)
k), (t

(2)
k , b

(2)
k), . . . , (t

(mk)
k , b

(mk)
k) describes the course

of the test on TCP connection k. To determine the test result
from the n recorded courses, let t∗ = min{t(m1)

1 , . . . , t
(mn)
n }

denote the time when the first transmission was finished. Then
an approximation bk for the amount of data received over TCP
connection k from the beginning of the test until time t∗ is
given as

bk = b
(mk−1)
k +

b
(mk)
k − b(mk−1)

k

t
(mk)
k − t(mk−1)

k

(t∗ − t(mk−1)
k)

and R = (b1 + · · · + bn)/t
∗ is defined to be the band-

width determined by the measurement method. The total
data amount consumed during the test execution is given as
V =

∑n
k=1 b

(mk)
k . This value depends on the nominal duration

and on the characteristics of the connection to be measured.
The test records can also be used to calculate the result

Rτ and the consumed data amount Vτ that a test execution
with a shorter nominal duration τ would have yielded. This is
done by removing all tuples (t

(j)
k , b

(j)
k) in the sequence s that

contain information about data chunks sent after time τ and
a subsequent repetition of the above calculation. The absolute
percentage deviation of Rτ from R is then given as dτ =
100 · |1−Rτ/R|. By replacing R with V and Rτ with Vτ in
the right-hand-side of this formula, one obtains the percentage

sτ of saved date volume that this reduction of the nominal
duration from t to τ would cause. These two quantities (dτ
and sτ) will serve as metrics for evaluating the effect of test
shortenings. In general, the percentage deviation dτ will be
small if the courses on all threads are approximately linear.
Otherwise, there may be a huge deviation.

IV. FIXED TEST DURATION

The simplest approach to reduce the consumed data volume
of a state-of-the-art implementation of a speed test with fixed
predefined nominal duration T (based on the method specified
in the last section) is an implementation with a shorter fixed
duration τ . This shortening may lead to a large deviation dτ
between the result Rτ of the new test and the result R of
the original one. One suspects that this is particularly the
case when there is a big difference between τ and T , which,
on the other hand, would also result in a huge amount of
reduced consumed date volume. This leads to the question if
there is a τ ∈ (0, T) such that, on the one hand, the average
consumed date volume of the test is reduced considerably and
on the other hand, the test result is not changed significantly.
To make the latter precise, we say that the result is changed
significantly, if dτ > 10%. Here, we have chosen the bound
of 10% because it seems to be a value which end-users may
accept as inaccuracy in the result of a speed test.

To get an answer to this question, we will consider a
huge database which contains the recorded courses of real
executions of this speed test with fixed duration T . The average
amount of reduced data volume s(τ), which is the mean of the
values sτ for all tests in the database, and the proportion p(τ)
of tests in the database with significant deviation dτ can then
be considered as functions depending on τ . Both functions
tend to zero if τ tends to T . The existence of a τ ∈ (0, T) such
that p(τ) is sufficiently small and s(τ) is substantial would
yield a positive answer to the question stated above.

V. DYNAMIC TEST DURATION

Lets consider a speed test (measuring either download or
upload throughput) as presented in detail in Sec. III with a
fixed nominal duration T . The data rate determined by this
test (on a single execution) is denoted with R. Our goal is
to specify a new test with a dynamic nominal duration t
(satisfying t ≤ T) which, on the one hand, gives a result
R′ that only slightly deviates from the data rate R and, on
the other hand, reduces the average consumed data amount
extensively. To keep the exposition simple, the set of possible
values for t is chosen to consist just of two elements. One
of these elements is T . We denote the second element with τ
(which satisfies τ < T). This means that the new test either
stops when the last data chunk, which was sent before time
τ , arrives (we will henceforth call this a short test) or the
test proceeds as the original one. The decision, which value
t takes (that is, which of the just mentioned cases occurs), is
made on the basis of a calculation performed by a trained
artificial neural network. To be more specific, this neural
network (which is a simple multi-layer perceptron) has two

output values, which are real numbers, denoted y1 and y2. It
is trained in a way such that a high value of y1 is an indicator
that a test execution with nominal duration τ would yield a
result that does not deviate from R considerably. On the other
hand, a high value of y2 indicates the opposite, i.e. that there is
a huge difference between R and the data rate that a short test
would determine. Hence the natural decision rule (determining
t) using these two output values is the following:

If y1 ≥ y2 + λ, then t = τ (with λ ∈ R).
Otherwise, t = T .

Here we introduced a parameter λ, which controls how cir-
cumspectly the rule decides for a short test: The larger λ is,
the higher the indicator y1 must be (compared to y2) in order
to make such a decision.

The calculation of the neural network and the subsequent
decision for t = τ or t = T is done at the aforementioned
time of arrival of the last chunk sent before time τ . As input,
the neural network obtains the course of the data rate from the
beginning of the test up to this moment. Since the calculation
has to be done on mobile end devices, one needs to keep
in mind the required computing effort, which depends on the
actual structure of the used neural network. To train this neural
network, the obvious approach is via a supervised learning
process using the recorded data of real executions of the
original speed test (with fixed nominal duration T) on mobile
devices in cellular 4G networks. These records are also used to
determine the parameter λ, which completes the specification
of the proposed method. Next, we will describe this in more
detail. The subsequent evaluation will be done by calculating
the test proportion with significant absolute deviation between
the result of the test with dynamic duration and the result of
the test with fixed duration (where the deviation is again called
significant if it is greater than 10%.), as well as the amount
of saved data volume.

A. Inputs of the Neural Network

The neural network gets as input the course of the data
rate in the time interval [0, τ] of each thread k = 1, . . . , n.
This course can be calculated form the sequence s =

(t
(1)
k , b

(1)
k), (t

(2)
k , b

(2)
k), . . . , (t

(mk)
k , b

(mk)
k) by forming the frac-

tions b
(j)
k /t

(j)
k . Usually, the length of this sequence varies

from one test execution to another (and also from one TCP
connection to another). Since the number of actual input values
of the neural network has to be constant, a preprocess is
necessary. Therefore, one chooses a resolution δ > 0 in a way
such that τ is an integer multiple of δ. The inputs delivered
to the neural network are then the approximations x(i)k of the
data rate on connection k in the time intervals [(i − 1)δ, iδ]
(with i = 1, . . . , τ/δ), which are calculated from the fractions
b
(j)
k /t

(j)
k by a linear approximation. This results in nτ/δ input

values.

B. Structure of the Neural Network

The considered neural network is a feed-forward neural
network with one input layer, several hidden layers and one

output layer (i.e. a multi-layer perceptron). The discussion
of the preceding subsection leads to nτ/δ input nodes. As
activation functions we selected exponential linear units (given
as x 7→ ex−1 for x ≤ 0 and x 7→ x for x > 0) for all neurons
in the hidden layers and linear functions for the nodes at the
output layer. This is a common choice for classification tasks.

C. Training Process

To train a neural network such that its output values are
indicators for or against a short test duration, we will use a
database containing the recorded courses of real speed test
executions with fixed nominal duration T . For a supervised
learning process, it is necessary to label this data. This is
done in the following way: Using the procedure described
in Sec. III we calculate for each record in the database the
absolute percentage deviation dτ in the result that a test
execution with nominal duration τ would yield. The data then
splits into two classes: Class A if dτ is smaller than 5%, and
class B otherwise. Here, we have chosen the class border
so that a (supposed) poor accuracy of the neural network
in the classification of tests close this border has no strong
influence in the evaluation, where we will consider deviations
as significant if they are greater than 10%. After the data are
labeled in this way, the neural network is trained to determine
from the inputs x(i)k the class which the test belongs to. That is,
the neural network should learn to determine from the course
of the data rate in the first τ seconds of the test execution, if
the deviation of Rτ from R is above or below 5%. Note that
Rτ can be approximately calculated from the values x(i)k . The
accuracy which the neural network reaches in its classification
task will show how much information the values x(i)k contain
in order to determine R. Not all tests in the available database
should be used for the training. With some of them, one should
check if no overfitting occurs. This data is called test data.
Usually the ratio of training to test data is about 9 : 1.

D. Determination of the Control Parameter

The test data can also be used to determine the control
parameter λ for the proposed speed test. This can be done in
the following way: One selects a small percentage ρ such that
a significant deviation of the result in not more than ρ percent
of the tests is acceptable (for both the provider of the test and
the customer). This can be done, since this portion tends to
0 with ascending λ. However, it is not self-evident that this
bound on the proportion of tests with significant deviation then
also holds for a set of tests different from the test data. This
has to be checked in a subsequent evaluation of the method
with a database containing exclusively tests not used for the
training of the neural network or the determination of λ.

E. Computing Effort

The computing effort of the neural network to decide
whether a test belongs to class A or B consists essentially of
matrix multiplications, additions and the multiple application
of the activation functions. Especially with optimized frame-
works (like TensorFlow Lite) and by using a small number of

hidden layers and neurons, this can be done on mobile end-
devices in real time. On the other hand, the training process
takes much longer and requires more computational power.
However, this can be done in advance on a suitable machine,
and hence does not influence the applicability of the test.

F. Summary of the Method

To recapitulate, the proposed test with dynamic duration
starts as the usual (fixed duration) test. After the last data
chunk which was sent before time τ arrived completely at the
client, the courses of the data rate on each TCP connection
from the beginning of the test up to this moment is sampled
with resolution δ. This sampling process yields the inputs for
the neural network, which was trained before to decide on the
basis of these values, whether the test with nominal duration
τ gives a result which is not significantly different from the
result, that a test with nominal duration T would produce. A
possibly low confidence in the result of the neural network
can be counteracted by selecting a high parameter λ. After
the decision for or against a short test is made, the test either
stops or the server continuous with sending data chunks until
time T .

VI. EVALUATION

For the evaluation we considered a speed test implementa-
tion with a fixed nominal duration of T = 7s and n = 3
parallel TCP connections, together with a database which
contains 37 935 download records and 37 861 upload records
of executions of this test. The distinction between download
and upload tests is necessary, since one expects a difference
in the behavior of them. All the tests were performed by end-
users via RMBT in the period between January 2015 and April
2018 on their personal mobile Android or iOS devices in 4G
cellular networks. The total number of different device types
was 1564. The average measured bandwidth was 43.8MBit/s
for download tests and 17.9MBit/s for upload tests.

First of all we investigate the percentage deviation in the
result and the amount of saved data volume that a general
shortening of the duration T would cause. As explained in
Sec. IV, this information is contained in the functions s(τ)
and p(τ), which both depend on the nominal duration τ of the
short test. The course of these functions (with respect to the
database in question) is shown in Fig. 1. Some special values
are shown in Tab. I. It is not surprising that the amount of
saved data volume s(τ) depends linearly on τ and that both
functions are monotonously decreasing (which obviously is

TABLE I
SPECIAL VALUES OF s(τ) AND p(τ)

Nominal test duration τ
4s 5s 6s

Download s(τ) 43.95% 28.74% 14.13%
p(τ) 25.93% 13.50% 3.09%

Upload s(τ) 42.67% 27.74% 14.02%
p(τ) 22.00% 13.20% 5.06%

(a) Download (b) Upload

Fig. 1. The amount of saved data volume s(τ) and the proportion of tests p(τ), where the deviation of the result of a test with fixed nominal duration τ
from the result of a test with fixed nominal duration T = 7s would be significant (i.e. greater than 10%).

TABLE II
EVALUATION OF THE SPEED TEST WITH DYNAMIC DURATION

Download Upload

Number of speed test records used for the evaluation 37 935 37 861
Number of tests executed as short ones by the proposed method 11 851 13 162
Number of tests with significant absolute deviation 510 375
Proportion of tests with significant absolute deviation 1.34% 0.99%
Overall consumed data volume of the original speed test with fixed duration 1453 GB 586 GB
Overall consumed data volume of the proposed speed test with dynamic duration 1160 GB 443 GB
Percentage of reduced data volume 20.18% 24.49%

even a general fact for s(τ)). As one can see from these graphs,
the amount of tests p(τ) with significant deviation between Rτ
and R is, even for values of τ which are close to T = 7s,
not negligible. Hence the question stated in Sec. IV, i.e. if
there is a τ ∈ (0, T) such that, on the one hand, the average
consumed date volume of the test is reduced considerably and
on the other hand, the test result is not changed significantly,
must be answered negatively.

For the test with dynamic duration, we selected a duration
of τ = 4s for a short test and a resolution of δ = 0.25s for the
sampling of the courses. This leads to nτ/δ = 48 input values
for the neural network. The number of hidden layers was set
to 2, with 32 neurons in the first and 16 neurons in the second
hidden layer. The training process of this ML model was done
with another database consisting of test records of the same
speed test implementation. This database is disjoint from the
database used for the evaluation, i.e. no test in the one database
is contained in the other. Due to the differing behaviour already
mentioned above (which can now even be observed in Fig. 1),
a neural network has to be trained separately for the download
and the upload test. The data was further divided into actual
training data and test data (to check if no overfitting behavior
occurs and to determine λ). To be precise, we used 375 000
speed test records for the training process in each case, 26 601
records as test data in the download case and 25 790 records
as test data in the upload case.

The neural networks were implemented in Python using the
TensorFlow Framework. Weights were initialized randomly
and all bias values were initially set to 0. Optimization was
done with the Adam Optimization Algorithm [9], which is
one of the state-of-the-art methods. The number of training
epochs was set to 1000 with a batch size of 50. The neural

networks reached a maximal accuracy of about 76% in the
classification of download tests and about 78% in the upload
case. This moderate accuracy is not surprising, since the test
course of the first four seconds contains information about the
necessary test length, but does not fully determine it. After
that, we selected the necessary parameter λ in a way such
that the proportion of tests with significant deviation between
the result of the test with dynamic duration and the result of
the test with fixed duration is exactly 1% (i.e. the value of ρ
was selected to be 1%). The resulting values are λ = 0.9 for
the download test process and λ = 1.5 for the upload process.

The subsequent evaluation was again done with the 37 935
download records and the 37 861 upload records which were
already used for the evaluation of the general test shortening.
Also the principle was similar: We calculated the test pro-
portion with significant deviation between the result of the
test with dynamic duration and the result of the test with
fixed duration, as well as the amount of saved data volume.
Tab. II shows the resulting values. In contrast to the general test
shortening, the proportion of tests with significant deviation is
small, while the amount of saved data volume is considerable.

Fig. 2 shows a histogram of the percentage deviations of
those tests where this value is above 10%. As one can observe,
most of them are just slightly above 10%. From the values
in Tab. I and Tab. II it can be deduced that a percentage of
31.24% of short download tests results in a saving of 45.92%
in relation to the total possible saving (i.e. if all tests would
be performed with a nominal duration of four seconds). This
suggests that a short measurement is especially possible for
tests with high data volume. A more detailed investigation
provided the following results: The average consumed data
volume of all download tests is 38.31 MB, whereas the average

(a) Download (b) Upload

Fig. 2. Histogram of deviations which are significant (i.e. greater than 10%).

consumed data volume of all download tests where a short
measurement is possible is 56.76 MB. For upload tests the
corresponding values are 15.49 MB and 26.21 MB.

VII. CONCLUSION

In this paper we investigated two different approaches to
reduce the consumed data volume in tests which determine
the available download and upload data rate of an end-user
Internet connection. The first approach is simply a general
shortening of the test duration. The second (novel) approach
is a test with a dynamic test duration determined through a
trained artificial neural network. The evaluation showed that,
on the one hand, a principally test shortening often leads to
huge deviations in the result, while the test result is only
changed insignificantly in the method with dynamic duration
(compared to the result of a test with a fixed duration). On the
other hand, the amount of saved data volume of the test with
dynamic duration is still considerable.

There are various possible approaches for improvements or
extensions of the proposed method. For example, until now
only the test course of the first τ seconds was used as input
for the neural network. This could be supplemented by further
information, like the measured signal strength or GPS data,
which may lead to a higher accuracy in the classification
task of the neural network. Secondly, up to now the set of
possible values for the dynamic test duration consists just
of two elements. Here, an extension to a larger number of
possible duration times could be examined. This may further
reduce the volume of consumed data.

Finally, the general philosophy of this paper, to reduce the
effort for measurements by ML techniques, may has other
applications than just bandwidth measurements.

REFERENCES

[1] Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan,
Ion Stoica, and Hui Zhang. Developing a Predictive Model of Quality
of Experience for Internet Video. In ACM SIGCOMM Computer
Communication Review, volume 43, pages 339–350, 2013.

[2] BEREC. Net neutrality measurement tool specification. BoR (17) 179,
2017.

[3] Raouf Boutaba, Mohammad A Salahuddin, Noura Limam, Sara Ayoubi,
Nashid Shahriar, Felipe Estrada-Solano, and Oscar M Caicedo. A
comprehensive survey on machine learning for networking: evolution,
applications and research opportunities. Journal of Internet Services and
Applications, 9(1):1–99, 2018.

[4] Anna L. Buczak and Erhan Guven. A survey of data mining and
machine learning methods for cyber security intrusion detection. IEEE
Communications Surveys & Tutorials, 18(2):1153–1176, 2016.

[5] Pedro Casas. On the analysis of network measurements through machine
learning: The power of the crowd. In Network Traffic Measurement and
Analysis Conference (TMA), pages 1–8. IEEE, 2018.

[6] Chung-Hsing Hsu and Ulrich Kremer. Iperf: A framework for automatic
construction of performance prediction models. In Workshop on Profile
and Feedback-Directed Compilation (PFDC). Citeseer, 1998.

[7] Manish Jain and Constantinos Dovrolis. Pathload: A measurement tool
for end-to-end available bandwidth. In Proceedings of Passive and Active
Measurements (PAM) Workshop. Citeseer, 2002.

[8] Rick Jones et al. Netperf: a network performance benchmark. Informa-
tion Networks Division, Hewlett-Packard Company, 1996.

[9] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. preprint arXiv:1412.6980, 2014.

[10] Kevin Lai and Mary Baker. Measuring bandwidth. In INFOCOM’99.
Conference on Computer Communications. Proceedings. Eighteenth
Annual Joint Conference of the IEEE Computer and Communications
Societies. The Future is Now (Cat. No. 99CH36320), volume 1, pages
235–245. IEEE, 1999.

[11] Zoltán Móczár and Sándor Molnár. Bandwidth estimation in mobile
networks by busy period detection. In 25th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communication
(PIMRC), pages 1354–1358. IEEE, 2014.

[12] Thuy TT Nguyen and Grenville J Armitage. A survey of techniques for
internet traffic classification using machine learning. IEEE Communi-
cations Surveys and Tutorials, 10(1-4):56–76, 2008.

[13] Ravi Prasad, Constantinos Dovrolis, Margaret Murray, and KC Claffy.
Bandwidth estimation: metrics, measurement techniques, and tools.
IEEE network, 17(6):27–35, 2003.

[14] Vinay Joseph Ribeiro, Mark J. Coates, Rudolf H. Riedi, Shriram
Sarvotham, Brent Hendricks, and Richard G. Baraniuk. Multifractal
cross-traffic estimation. In ITC Conference on IP Traffic, Modeling and
Management, 2000.

[15] Christoph Soelder, Leonhard Wimmer, Dietmar Zlabinger, Ulrich
Latzenhofer, Ursula Prinzl, Philipp Sandner, Lukasz Budryk, Ulrich
Liener, and Thomas Schreiber. Rtr multithreaded broadband test (rmbt):
Specification. http://netztest.at/doc/, 2017.

[16] Joel Sommers, Paul Barford, and Walter Willinger. A proposed frame-
work for calibration of available bandwidth estimation tools. In 11th
IEEE Symposium on Computers and Communications (ISCC), pages
709–718. IEEE, 2006.

[17] Ajay Tirumala, Les Cottrell, and Tom Dunigan. Measuring end-to-end
bandwidth with iperf using web100. In Web100, Proc. of Passive and
Active Measurement Workshop. Citeseer, 2003.

